

Table of Contents

1.	About the Model	3
2.	Using the Economic Model	8
3.	Navigating the SHS Dashboard	14
4.	Navigating the Mini-grid Dashboard	31
5 .	Working with the Main Input Sheet	44

About the Model

This economic model was developed by SEforALL with the support of AllOn to identify opportunities for efficiencies and economies of scale in the existing solar upstream value chain, outline the prospects for localization (assembly or manufacturing locally in Nigeria) and serve as a useful first analytical step for different public and private stakeholder groups who wish to utilize the tool.

For example, the model assesses the impact of renewable energy industry policies on drivers of solar adoption such as product price. One of the ways it seeks to do this is by sensitizing the impact of importation tariffs and the Nigerian Electrification Project's solar home system (SHS) and mini-grid component subsidies on SHS pricing and mini-grid tariffs. Furthermore, it assesses the impact of other electrification drivers on greenhouse gas emissions savings and the viability of localization i.e., the pricing levels and number of SHS product units that need to be assembled or manufactured locally to make localizing the upstream value chain attractive.

Summarily, the model helps the user understand the effects of public and private sector interventions on key outcome indicators such as number of jobs created, product price, government revenue, and GHG emissions, among others.

Who Might Be Interested in Using this Model?

Stakeholder	Sample Use Case
Federal Government of Nigeria/ Rural Electrification Agency	 Provide macroeconomic analysis to determine the extent to which tariff and taxes impact localization
Component Manufacturers	 Highlight the impact of scale on the viability of local manufacturing
Component Assemblers	 Assess the potential cost of assembly for components of a solar system locally
Wholesale SHS Distributors	 Assess the impact of import tariff waivers on final consumer cost
Mini-grid Developers	 Assess the impact of subsidies and localization of PVs and batteries on mini-grid tariffs
Financial Institutions	 Assess the impact of borrowing costs on different localization scenarios and the effects of borrowing on localization in general
Donors	 Assess the impact of subsidies on localization potential
Other Industry Participants i.e., Green Agencies	 Evaluate the amount of carbon emission that can be reduced as a result of deploying solar systems
Consultants	Create a business case for localization

Where Can You Find the Model and Some of its Keys Outputs

Key outputs of the model were used in the development of the following reports:

- Achieving Economies of Scale in the Nigerian Solar Value Chain
 Opportunities and Benefits of Upstream Localization
- 2. Achieving Economies of Scale in the Nigerian Solar Value Chain

 A Guide for Government and Private Sector

Sample Model Methodology

Sample Model Outputs

Modelled assembly price: price of a 50Wp SHS (battery and PV assembled in Nigeria) with table fan. TV and bulbs from a 20MW capacity plant, locally assembled components – battery & PV import fariff reduction: 0% on all SHS system components; cost of finance reduction: from 12% to 5%; CggEç investments; assumes investment in plant capacity from 20M to 100MW; product subsidy; 20% of cost of SHS; 20% sales margin Jobs created over 6 years for SHS and 10 years for mini-grids.

Number of households able to afford is based on Nithio/Fraym geospatial data for homes that can pay at least NCN 5,000 per month, assuming households can transfer 50% of discretionary spending to cover monthly payments impact of localized manufacturing and other scenarios can be assessed from the contomic model. See Appendix for link.

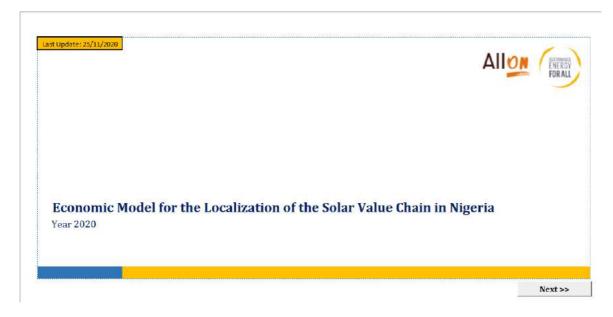
Modelled assembly price: price of a 50Wp SHS (battery and PV assembled in Nigeria) with table fan, TV and bulbs from a 20MWi capacity plant; locally assembled components — battery & PV import figiff reduction: 0% on all SHS system components; cost of finance reduction: from 12% to 5%; CapEx Investments: assumes investment in plant capacity from 20M to 100MW; product subsidy; 20% of cost of SHSs; 20% sales margin Jobs created over 5 years for SHSs and 10 years for mini-grids
Number of households able to afford is based on Nithio Fraym geospatial data for homes that can pay at least NGN 5,000 per month, assuming households can transfer 50% of discretionary spending to cover monthly payments.
Please note the impact of cost of debt on SHS product price will be more pronounced on any one single distributor. The reason for the minimal impact here is because we have assumed one distributor for the whole country for the purpose of modelling; as such they are able to spread their interests costs over much larger united of SHS assembled.

Using the Economic Model

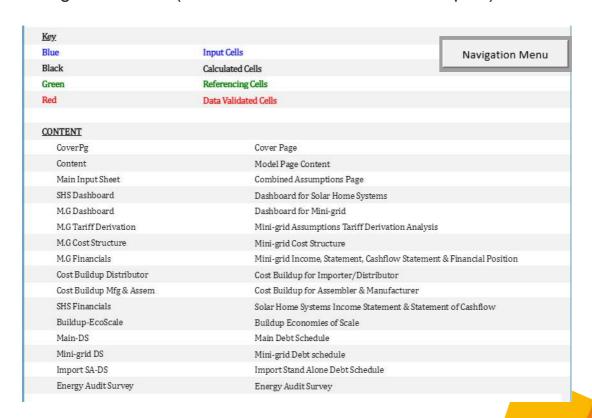
The model is divided up into two distinct solar system solutions, namely the solar home system (SHS) and the mini-grid, which are modelled with different sets of assumptions to arrive at the objective.

This user guide presents an overview of the model and gives stepby-step instructions on how a user can navigate and make sense of the scenarios presented.

System Requirements


Ensure that your computer meets or exceeds the following system requirements before downloading the model:

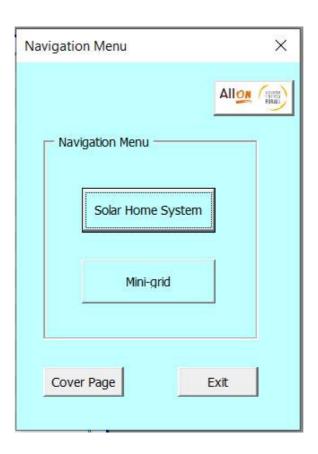
CPU	Intel Celeron 800 MHz (Intel Core 2 Duo 2 GHz recommended)
RAM	256 MB (2 GB recommended)
Available disk space	200 MB
Model Application	Microsoft Excel
Model Size	7MB
Operating system	Windows



Exploring the Model

The start page provides a convenient hub to the different sections of the model.

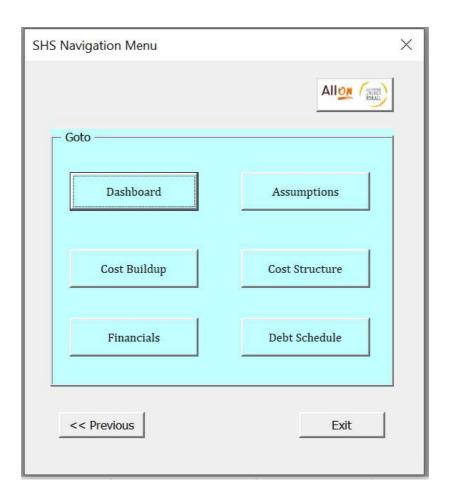
- To start, click the "Next" button on the start page, which immediately navigates the user to the model content page.
- The model content page describes all the available content tabs in the model as seen below. The content page also introduces the navigation menu (to be described in the next chapter).


Understanding the Navigation Menu

The model tries to keep track of your interactions via the navigation menu that is found on every tab in the model.

• To start, click on the navigation menu

- A new interaction screen is opened that gives you an option to select the technology of choice i.e., SHS or mini-grid
- It also provides the option to return to the start page or exit

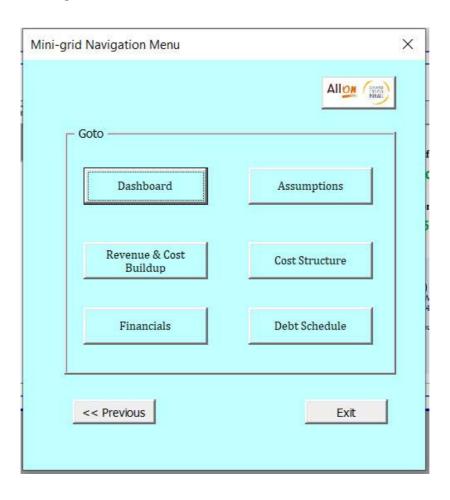

Navigating the Solar Home System Menu

- To start, click on the solar home system (SHS) button
- A new interaction screen is displayed with options to navigate the tabs that are associated with the building of the SHS model
- There are also options to return to the previous page and exit

Navigating the Solar Home System Menu

Continued

- The SHS navigation menu as seen below allows the user to go to the SHS dashboard, SHS specific model assumptions, buildup of all associated costs and cost structure, the three financial statements and the debt schedule
- For this user guide, the focus will be on the dashboard


Navigating the Mini-grid Menu

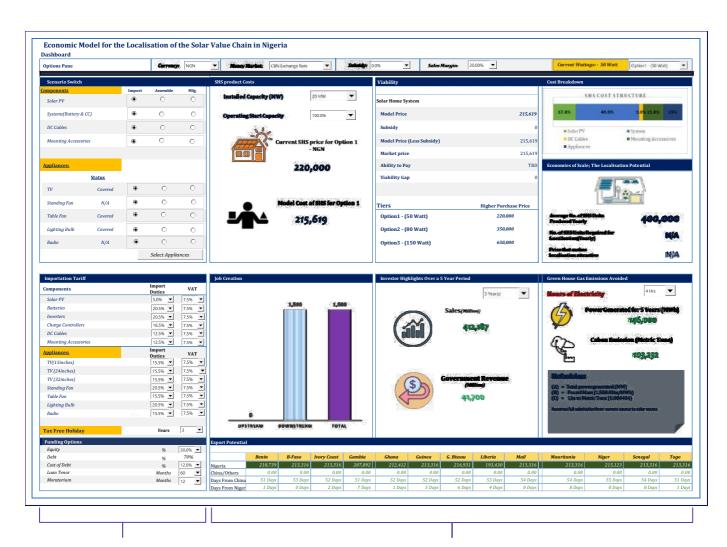
- To start, click on the mini-grid button
- A new interaction screen is displayed with options to navigate the tabs associated with the building of the mini-grid model in similar fashion to the SHS navigation menu

Navigating the Mini-grid Menu

Continued

- The mini-grid navigation menu as seen below allows the user to go to the mini-grid dashboard, mini-grid specific model assumptions, buildup of all associated costs and cost structure, the three financial statements and the debt schedule
- For this user guide, the focus will be on the dashboard

SHS and Mini-grid Dashboards


- The remainder of this manual will focus on the SHS and mini-grid dashboards
- All other tabs can be navigated and explored directly from the Excel version of the economic model

About the Solar Home System Dashboard

The SHS dashboard is a one-stop shop for the modelled market state scenarios, namely the importation of products (status quo), local assembly and local manufacturing.

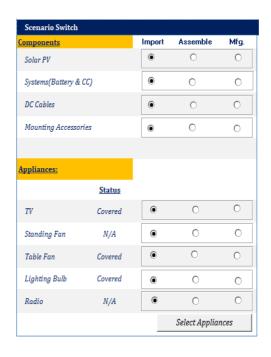
The dashboard also provides insight into the impact of each of these scenarios on key economic indicators such as price, jobs created, GHG emissions saved etc. See below for a snapshot of the dashboard.

Left Side: Scenarios and Options

Right Side:
Results based on Scenarios and Options

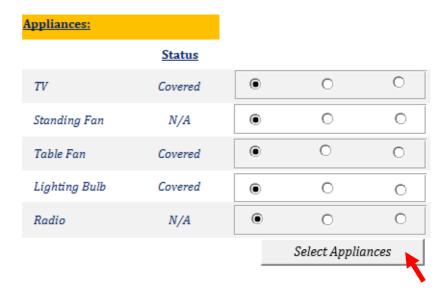
Main Sections of the SHS Dashboard

- 1. The Options Pane: This section allows the user to make changes to the model by exploring six key components: product currency, sources of foreign exchange, product subsidy, sales margin, product option and plant installed capacity.
- 2. The Scenario Switch: This section allows the user to make changes based on the three market state scenarios modelled: importation of SHS products, assembly and manufacturing of key components.
- 3. Importation Tariff: This section allows the user to make changes to port tariffs on their solar component of interest.
- **4. Funding Options:** This section allows the user to make changes to the capital structure/funding options of the project.
- 5. SHS Product Costs: This section shows the resulting costs of an SHS based on changes made in 1–4 above.
- 6. Subsidy Impact: This section shows the resulting impact of an applied subsidy in option 1 on product price.
- 7. Cost Breakdown: This section shows the resulting SHS cost breakdown based on changes made in 1–4 above.
- 8. Economies of Scale: This section shows the number of product units required to make localization attractive once the user decides to select an assembly option in 2 above.
- 9. **Job Creation:** This section shows the potential number of jobs created based on changes made in 1 above.
- 10. Financial Highlights: This section shows the impact of 1–4 above on private and public (government) revenues.
- 11. GHG Emissions Avoided: This section shows the number of GHG emissions avoided based on changes made to 1–4 above.
- 12. Export Potential: This section shows Nigeria's export potential by comparing product prices and delivery time when products are procured from Nigeria as compared to China.


Exploring the Options Pane

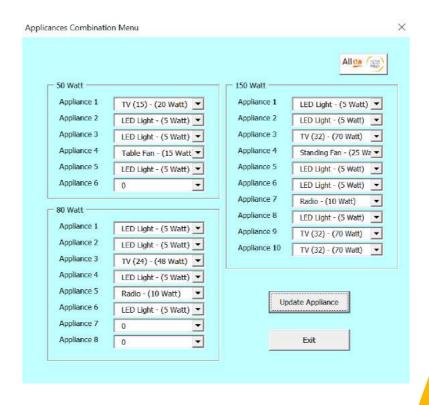
The Options Pane:

- Currency: Users can change the model currency between NGN and USD
- Money Market: Users can change the USD/NGN exchange rate between the Central Bank of Nigeria's rate and the parallel unofficial market rate
- Subsidy: Users can choose between several subsidy rates on the price of the SHS product
- Sales Margin: Users can apply different sales margins on the cost of an SHS
- SHS Option: Users can select between the three Tier 2 SHS options modelled: 50W, 80W and 150W
- Plant Installed Capacity: Users can select a range of installed capacity for their desired assembly and manufacturing plants. For fully imported SHS units, the installed capacity is a unit driver i.e., a 10MW plant will mean importation of 200,000/50Wp systems.


The Scenario Switches:

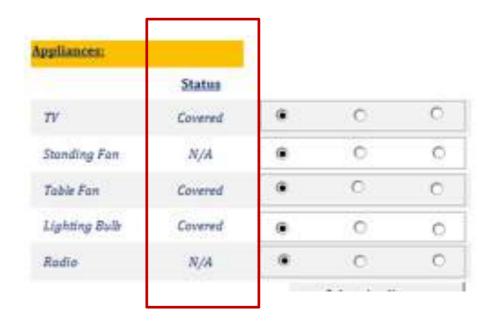
- The scenario switches allow the user to select the three distinct scenario types namely: i) importation of SHS products ii) assembly of SHS products and iii) manufacturing of SHS products. These scenarios are then applied to either SHS components or appliances as seen above.
- Selection of any of these scenario Switch buttons will have an effect on the price of SHS products.
- For example, the screenshot above currently shows that all SHS products and appliances are imported. Clicking on any of the switch buttons will change this dynamic. This is seen below in the screenshot showing solar PV assembly in Nigeria.

Scenario Switch			
Components	Import	Assemble	Mfg.
Solar PV	0	•	0
Systems(Battery & CC)	•	0	0
DC Cables	•	0	0
Mounting Accessories	•	0	0



Continued

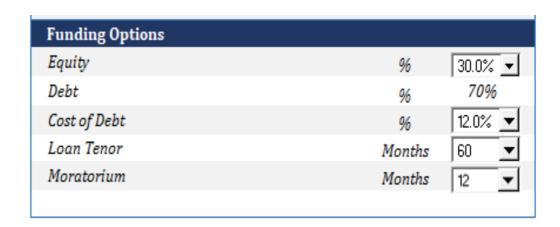
Selecting Appliances:


- The model allows the user to freely select a combination of desired appliances to go with the SHS components
- Clicking on the select appliances button will display a new dialogue prompting users to select desired appliances with their individual ratings as seen below

Continued

Selecting Appliances, continued:

- Once the desired selection is complete and depending on the SHS option, users must click the updated appliance button for selection changes to be affected
- Once updated, the appliances section of the dashboard will show what appliances are covered in the user selection status
- The screenshot below indicates the user has selected a TV, lighting bulb and table fan as the preferred appliances for the SHS
- All of these have implications on the pricing of the product

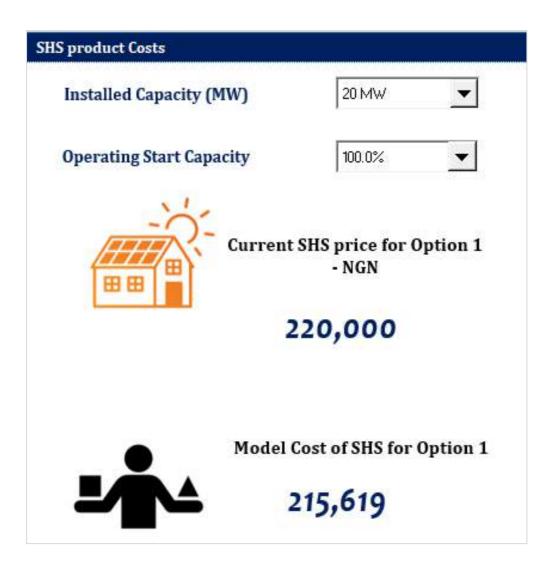

Exploring the Importation Tariff

Importation Tariff			
Components	Imp Duti	V A	
Solar PV	5.03	% ▼ 7.5%	¥
Batteries	20.5	5% ▼ 7.5%	+
Inverters	20.5	5% ▼ 7.5%	•
Charge Controllers	16.5	5% ▼ 7.5%	▼
DC Cables	12.5	5% ▼ 7.5%	•
Mounting Accessories	12.5	5% ▼ 7.5%	▼
Appliances:	Imp Duti	T 7 A 707	
TV(15inches)	15.5	5% ▼ 7.5%	•
TV (24inches)	15.5	7.5%	¥
TV (32inches)	15.5	5% ▼ 7.5%	•
Standing Fan	20.5	5% <u>▼</u> 7.5%	•
Table Fan	15.5	5% ▼ 7.5%	•
Lighting Bulb	20.5	5% ▼ 7.5%	•
Radio	20% 15.5	5% ▼ 7.5%	•
			_
Tax Free Holiday	T.	lears 1	-

Importation Tariff:

- This section of the model allows the user to make a varied selection of importation tariffs on solar components and appliances
- The tax-free holiday option mirrors the pioneer status incentive of the FGN
- Both segments have an impact on product price for both the SHS distributor/assembler as well as the manufacturer's profit

Exploring the Funding Options



Funding Options:

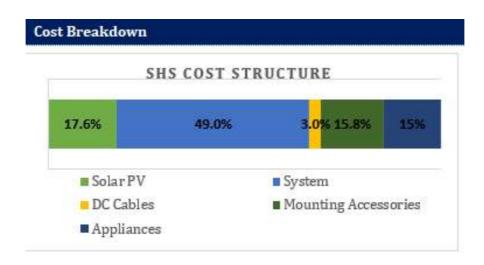
■ This section of the model allows the user to change the capital structure of their funding and vary the cost of debt to see the impact on the price of the product and profitability

Interpreting the SHS Product Costs Section

SHS Product Costs:

- This section of the model is result driven and only concerns itself with output from the other sections already described above
- It compares the current market price of the product against the modelled cost/price of the product
- Users can quickly see the deviation of the modelled price against the market price

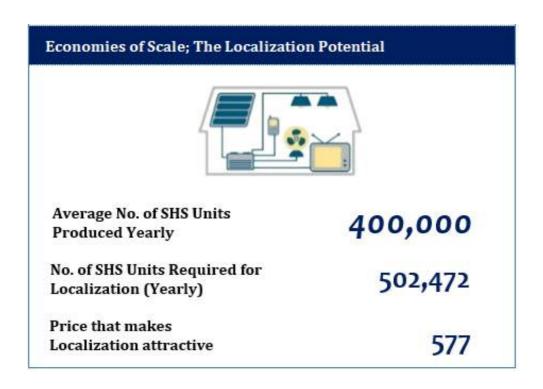
Subsidy Impact



Subsidy Impact:

This section shows the impact of product subsidy on the modelled price of the product

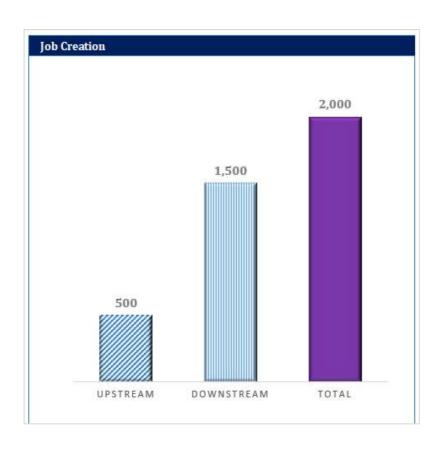
Cost Breakdown



Cost Breakdown:

 This shows the resulting SHS cost breakdown based on the various scenario changes described in earlier chapters

Economies of Scale



Economies of Scale:

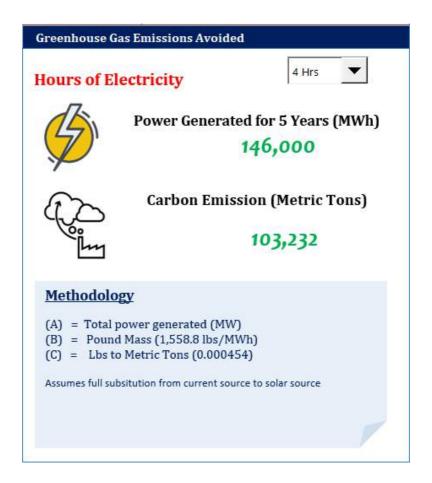
 This section presents the number of product units required to make localization attractive once the user decides to select an assembly or manufacturing option

Job Creation

Job Creation:

 This shows the resulting number of jobs created from increasing capacity

Financial Highlights



Financial Highlights:

 This shows the resulting private sector and government revenues based on user-selected scenarios

Greenhouse Gas Emissions Avoided

GHG Emissions Avoided:

- This shows the resulting GHG emissions avoided based on the assumption that the selected solar option is a full substitute for previous alternative power sources
- This section allows the user to vary the number of electricity hours provided on a daily basis

Export Potential

Export Potential							
	Benin	B-Faso	Ivory Coast	Gambia	Ghana	Guinea	G. Bissau
Nigeria	218,739	213,316	213,316	207,892	212,412	213,316	216,931
China/Others	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Days From China	51 Days	53 Days	52 Days	51 Days	52 Days	52 Days	52 Days
Days From Niger	1 Days	0 Days	2 Days	7 Days	1 Days	5 Days	6 Days

Export Potential:


- This section tries to provide a comparative analysis of the impact of a solar-enabled Nigeria across the ECOWAS region
- It compares the price of the selected SHS between a Nigerian assembled (and exported regionally) SHS to an SHS imported from China in the row immediately after
- It also shows the supply chain (days at sea) differences between importing products from Nigeria and from China (a proxy for the biggest importer)

About the Mini-grid Dashboard

The mini-grid dashboard is a one-stop shop for the modelled scenarios (importation of products (status quo), local assembly and local manufacturing) and the impact of each of these scenarios on key economic indicators such as the mini-grid tariff, jobs created, GHG Emissions saved etc. This is shown below.

Left Side: Scenarios and Options

Right Side:
Results based on Scenarios and Options

Main Sections of the Mini-grid Dashboard

- The Options Pane: This section allows the user to make changes to the model by exploring four key components – namely product currency, sources of forex, sales margin and number of connections.
- 2. The Scenario Switch: This section allows the user to make changes based on the three main scenarios modelled, importation, assembly and manufacturing.
- 3. Importation Tariff: This section allows the user to make changes to port tariffs on the modelled solar components.
- **4. Funding Options:** This section allows the user to make changes to capital structure/funding options.
- 5. Mini-grid Tariff: This section shows the resulting costs of an SHS based on changes made in 1–4 above.
- **6. Viability:** This section tries to compare the modelled tariff to current market tariffs.
- 7. Cost Breakdown: This section shows the resulting mini-grid cost breakdown based on changes made in 1–4 above.
- 8. **Job Creation:** This section shows the potential number of jobs created based on changes made in 1 above.
- 9. Financial Highlights: This section shows the impact of 1–4 above on private and public (government) revenues.
- **10. GHG Emissions Avoided:** This section shows the number of GHG emissions avoided based on changes made to 1–4 above.

Exploring the Options Pane

The Options Pane:

- Currency: Users can change the model currency between NGN and USD
- Money Market: Users can change the USD/NGN exchange rate between the Central Bank of Nigeria's rate and the parallel unofficial market rate
- Sales Margin: Users can apply different sales margins on the cost of SHS
- Number of Connections: Users can change the number of connections as desired

Scenario Switch			
<u>Components</u>	Import	Assemble	Mfg.
Solar PV	•	0	0
Batteries	•	0	0
Inverters	•	0	0
Charge Controllers	•	0	0
DC Cables	•	0	0
Mounting Accessories	•	0	0

The Scenario Switches:

- The scenario switches allow the user to select the three distinct scenario types namely i) importation of mini-grid component products ii) assembly of component products and iii) manufacturing of component products.
- Selection of any of these scenario switch buttons will have an effect on the mini-grid tariff.
- For example, the screenshot above currently shows all minigrid components are imported. Clicking on any of the switch buttons will change this dynamic. This is seen below in the screenshot showing solar PV assembly in Nigeria.

Exploring the Importation Tariff

Importation Tariff		
Components	Import Duties	VAT
Solar PV	5.0% ▼	7.5% 🔻
Batteries	20.5%	7.5% 🔻
Inverters	15.5% ▼	7.5% ▼
Charge Controllers	16.5% ▼	7.5% ▼
DC Cables	12.5% ▼	7.5% 🔻
Mounting Accessories	12.5%	7.5% ▼
Tax Free Holiday	Years	3

Importation Tariff:

- This section of the model allows the user to make a varied selection of importation tariffs on solar components
- The tax-free holiday option mirrors the pioneer status incentive of the FGN
- Both segments have an impact on the mini-grid tariff

Exploring the Funding Options

Funding Options		
Equity	%	30.00%_▼
Debt	%	70%
Cost of Debt	%	12.0%
Loan Tenor	Months	60 ▼
Moratorium	Months	12 🔻

Funding Options:

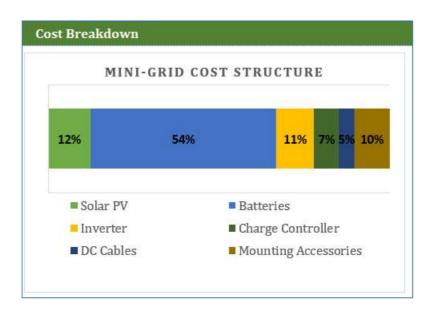
This section of the model allows the user to change the capital structure of the funding and vary the cost of debt to see the impact on the price of the product and profitability

Interpreting the Mini-grid Tariff Section

Mini-grid Tariff:

- This section of the model is result driven and only concerns itself with the outputs of sections already described above
- It displays the cost recovery tariff for the mini-grid installation based on the scenarios previously described and the number of mini-grid connections (i.e., customers)
- Users can quickly make a comparison between the modelled tariff and current market tariffs

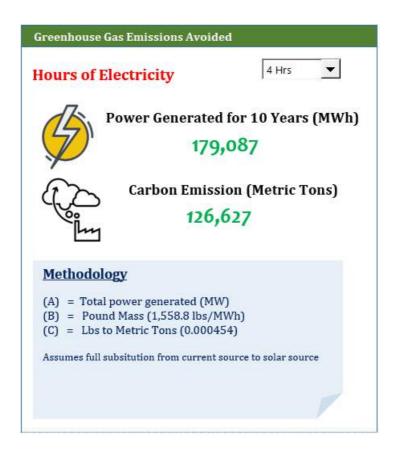
Viability


Viability	
<u>Mini-grid</u>	
Model Tariff (kWh)	204.27
Market price	250.00
Ability to Pay	
Viability Gap	0.00

Viability:

This shows the gap between modelled price and average current market tariff

Cost Breakdown



Cost Breakdown:

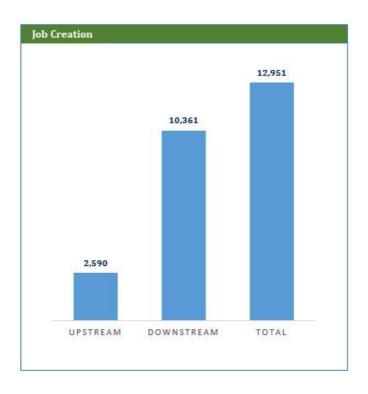
This shows the resulting cost breakdown of mini-grid components based on the various scenario changes described in earlier chapters

Greenhouse Gas Emissions Avoided

GHG Emissions Avoided:

- This section shows the resulting GHG emissions avoided based on the assumption that the solar mini-grid option is a full substitute for previous alternative power sources
- This section also allows the user to vary the number of electricity hours provided on a daily basis

Financial Highlights



Financial Highlights:

 This section shows the resulting private sector and government revenues based on user-selected scenarios

Job Creation

Job Creation:

 This section shows the resulting number of jobs created from increasing capacity

About the Main Input Sheet

The main input sheet is the primary source for the model's assumptions; it is a display of the base data used to calculate the model scenarios and their resulting output. To better understand the main input sheet assumptions, it serves to understand how the costs for an SHS product and mini-grid tariff are derived.

Solar Home Systems Cost Derivation

The model is predominantly driven by a cost-per-watt methodology where costs are aggregated from a per-watt level to a per-unit level for components, appliances and all other ancillary cost items.

Details of how these costs are aggregated for the three modelled scenarios (importation, assembly and manufacturing) and product type (e.g., solar PV) are outlined below:

S/N	Calculation Steps	Importation	Assembly	Manufacturing
1	Sourced cost of component raw materials or component per watt	Ø	Ø	Ø
2	Derived cost of all import tariffs per watt	Ø		Ø
3	Derived cost of insurance per watt	Ø	Ø	Ø
4	Derived cost of VAT per watt	Ø	Ø	Ø
5	Summation of (1) – (4) above to arrive at landed cost per watt	Ø	Ø	Ø
6	Multiplied landed cost per watt by desired system size to arrive at cost per unit	Ø	②	Ø
7	Derived capex recovery cost per unit	8		Ø
8	Derived opex recovery cost per unit	Ø	Ø	Ø
9	Derived debt recovery cost per unit	Ø	Ø	Ø
10	Summation of (6) – (9) above was used to arrive at the implied SHS cost	Ø	Ø	Ø

Cost Breakdown

The mini-grid cost tariff is a bottom-up approach where the cost of development, power generation, power distribution, metering and other ancillary costs are derived and divided by the total quantum of power to be generated during the modelled useful life of the asset.

S/N	Calculation Steps	
1	Derived the cost of site, site preparation and lease (generation)	
2	Derived the cost design, feasibility and engineering	
3	Derived the cost of construction and installation	
4	Derived the cost of testing and commissioning	
5	Derived the cost of generation assets with varying costs as mirrored from the SHS process i.e., asset could be imported, assembled or manufactured locally	
6	Derived the cost of distribution assets	
7	Derived the cost of metering costs	
8	Derived other ancillary costs i.e., insurance and contingencies	
9	Summation of (1) – (9) above to arrive at total capex costs	
10	Less NEP Capex Subsidy of \$350/connection to arrive at the subsidized capex costs	
11	Derived operating expenses and interest expenses	
12	Summation of (11) and (12) to arrive at full costs of generation for the mini-grid	
13	Derived the quantum of power generated over the desired period	
14	Division of (13) by (12) to arrive at cost recovery tariff for the minigrid	

Model Assumptions

The model assumptions are divided into various sub-components. This handbook will focus on a few key assumptions while the remainder not described here are detailed in the model's main input sheet tab.

Macro Assumptions:

- VAT 7.5%
- Company income tax 32%
- Pension contribution 18%
- Industrial training funds 1%
- Nigeria Social Insurance Trust Fund 1%
- CBN exchange rate \$1/N381
- Parallel market rate \$1/N468

Import Tariff Assumptions on Components and Appliances:

Component	Import Tariff	Appliance	Import Tariff
Solar PV	5.0%	TV (32)	15.5%
Batteries	20.5%	Standing Fan	20.5%
Inverters	20.5%	Table Fan	15.5%
Charge Controllers	16.5%	LED Light	20.5%
DC Cables	12.5%	Radio	15.5%
Mounting Accessories	12.5%		

Economies of Scale:

 Imported SHS products have a discount table as seen below for applicable reduction in price based on additional volume of units purchased

Unit (From)	Unit (To)	% Discount
0	199,999	0%
200,000	999,999	5%
1,000,000	Above	10%

 Assembly and manufacturing plants gain cost efficiency on products to the tune of 0.04% per MW of production

Jobs Created Assumptions:

- For every 1MW of capacity added:
 - 75 downstream jobs are created
 - 25 upstream jobs are created for an assembler
 - 13 upstream jobs are created for the manufacturer

Financing Assumptions:

- 70% debt and 30% equity
- 5 Year loan tenor with 1 Year moratorium
- WACC: 22%
- Cost of debt: 12%
- Cost of equity: 28%

